Treatment of acute promyelocytic leukaemia with all-trans retinoic acid and arsenic trioxide: a paradigm of synergistic molecular targeting therapy.

نویسندگان

  • Guang-Biao Zhou
  • Ji Zhang
  • Zhen-Yi Wang
  • Sai-Juan Chen
  • Zhu Chen
چکیده

To turn a disease from highly fatal to highly curable is extremely difficult, especially when the disease is a type of cancer. However, we can gain some insight into how this can be done by looking back over the 50-year history of taming acute promyelocytic leukaemia (APL). APL is the M3 type of acute myeloid leukaemia characterized by an accumulation of abnormal promyelocytes in bone marrow, a severe bleeding tendency and the presence of the chromosomal translocation t(15;17) or variants. APL was considered the most fatal type of acute leukaemia five decades ago and the treatment of APL was a nightmare for physicians. Great efforts have been made by scientists worldwide to conquer this disease. The first use of chemotherapy (CT) was unsuccessful due to lack of supportive care and cytotoxic-agent-related exacerbated coagulopathy. The first breakthrough came from the use of anthracyclines which improved the complete remission (CR) rate, though the 5-year overall survival could only be attained in a small proportion of patients. A rational and intriguing hypothesis, to induce differentiation of APL cells rather than killing them, was raised in the 1970s. Laudably, the use of all-trans retinoic acid (ATRA) in treating APL resulted in terminal differentiation of APL cells and a 90-95% CR rate of patients, turning differentiation therapy in cancer treatment from hypothesis to practice. The combination of ATRA with CT further improved the 5-year overall survival. When arsenic trioxide (ATO) was used to treat relapsed APL not only the patients but also the ancient drug were revived. ATO exerts dose-dependent dual effects on APL cells: at low concentration, ATO induces partial differentiation, while at relatively high concentration, it triggers apoptosis. Of note, both ATRA and ATO trigger catabolism of the PML-RARalpha fusion protein which is the key player in APL leukaemogenesis generated from t(15;17), targeting the RARalpha (retinoic acid receptor alpha) or promyelocytic leukaemia (PML) moieties, respectively. Hence, in treating APL both ATRA and ATO represent paradigms for molecularly targeted therapy. At molecular level, ATRA and ATO synergistically modulate multiple downstream pathways/cascades. Strikingly, a clearance of PML-RARalpha transcript in an earlier and more thorough manner, and a higher quality remission and survival in newly diagnosed APL are achieved when ATRA is combined with ATO, as compared to either monotherapy, making APL a curable disease. Thus, the story of APL can serve as a model for the development of curative approaches for disease; it suggests that molecularly synergistic targeted therapies are powerful tools in cancer, and dissection of disease pathogenesis or anatomy of the cancer genome is critical in developing molecular target-based therapies.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recent advances in acute promyelocytic leukaemia

Acute promyelocytic leukaemia (APML) is a subtype of leukaemia arising from a distinct reciprocal translocation involving chromosomes 15 and 17, which results in the PML-RARA fusion gene. Over the past three decades, APML has been transformed from a highly fatal disease to a highly curable one. This drastic improvement is because of the introduction of a new treatment strategy with all-trans re...

متن کامل

Presenting features and treatment outcome of acute promyelocytic leukemia arising after multiple sclerosis.

We report the clinical features and treatment outcome of 33 patients with multiple sclerosis who developed acute promyelocytic leukemia. Thirty patients were previously exposed to mitoxantrone. The median latency period between treatment initiation and acute promyelocytic leukemia diagnosis was 32 months. The PML-RARA bcr1 iso-form was identified in 87% of cases. Twenty-nine (90%) patients achi...

متن کامل

A complex variant t(3;15) (q26;q13) representing cryptic/masked acute promyelocytic leukaemia with a novel breakpoint of chromosome 15—a case report

Acute promyelocytic leukaemia (APML) is a biologically and clinically distinct variant of AML, currently classified as acute myeloid leukaemia with recurrent cytogenetic anomalies t(15;17) (q22;q21), promyelocytic leukaemia-retinoic acid receptor alpha, diagnosis regardless of blast count in the World Health Organization classification system. It is one of the curable malignancies, has a unique...

متن کامل

Tamibarotene in patients with acute promyelocytic leukaemia relapsing after treatment with all-trans retinoic acid and arsenic trioxide.

Treatment of acute promyelocytic leukaemia (APL) with arsenic trioxide (ATO) and all-trans retinoic acid (ATRA) is highly effective first-line therapy, although approximately 5-10% of patients relapse. Tamibarotene is a synthetic retinoid with activity in APL patients who relapse after chemotherapy and ATRA, but has not been studied in relapse after treatment with ATO and ATRA. We report on a p...

متن کامل

MYELOID NEOPLASIA Autophagy contributes to therapy-induced degradation of the PML/RARA oncoprotein

Treatment of acute promyelocytic leukemia (APL) with all-trans retinoic acid and/or arsenic trioxide represents a paradigm in targeted cancer therapy because these drugs cause clinical remission by affecting the stability of the fusion oncoprotein promyelocytic leukemia (PML)/ retinoic acid receptor alpha (RARA). The authors of previous studies have implicated the ubiquitin-proteasome pathway a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Philosophical transactions of the Royal Society of London. Series B, Biological sciences

دوره 362 1482  شماره 

صفحات  -

تاریخ انتشار 2007